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Deep CNN-Based Blind Image Quality Predictor
Jongyoo Kim, Member, IEEE, Anh-Duc Nguyen, and Sanghoon Lee , Senior Member, IEEE

Abstract— Image recognition based on convolutional neural
networks (CNNs) has recently been shown to deliver the state-
of-the-art performance in various areas of computer vision and
image processing. Nevertheless, applying a deep CNN to no-
reference image quality assessment (NR-IQA) remains a chal-
lenging task due to critical obstacles, i.e., the lack of a training
database. In this paper, we propose a CNN-based NR-IQA
framework that can effectively solve this problem. The proposed
method—deep image quality assessor (DIQA)—separates the
training of NR-IQA into two stages: 1) an objective distortion
part and 2) a human visual system-related part. In the first
stage, the CNN learns to predict the objective error map, and
then the model learns to predict subjective score in the second
stage. To complement the inaccuracy of the objective error
map prediction on the homogeneous region, we also propose
a reliability map. Two simple handcrafted features were addi-
tionally employed to further enhance the accuracy. In addition,
we propose a way to visualize perceptual error maps to analyze
what was learned by the deep CNN model. In the experiments,
the DIQA yielded the state-of-the-art accuracy on the various
databases.

Index Terms— Convolutional neural network (CNN), deep
learning, image quality assessment (IQA), no-reference
IQA (NR-IQA).

I. INTRODUCTION

THE goal of image quality assessment (IQA) is to predict
the perceptual quality of digital images in a quantitative

manner. Digital images are likely to be inevitably degraded
in the process from content generation to consumption. The
acquisition, transmission, storage, postprocessing, or com-
pression of images introduces various distortions, such as
Gaussian white noise, Gaussian blur (GB), or blocking arti-
facts. A reliable IQA algorithm can help quantify the quality
of images obtained blindly from the Internet and accurately
assess the performance of image processing algorithms, such
as image compression and super-resolution, from the perspec-
tive of a human observer. IQA is classified in general into
three categories, depending on whether a reference image
(the pristine version of an image) is available: full-reference
IQA (FR-IQA), reduced-reference IQA (RR-IQA), and no-
reference IQA (NR-IQA). In general, the performance of
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these techniques, in order of decreasing accuracy, is FR-IQA,
RR-IQA, and NR-IQA. However, since reference images are
not accessible in a number of practical scenarios, NR-IQA is
most appropriate as the most general method.

The bit rate of computer networks has continued to increase
in recent years and has enabled the provision of high-quality
entertainment to end users who do not have reference images;
hence, significant research efforts have been made to enhance
the accuracy of NR-IQA from the perspective of the end user.
Many recently proposed NR-IQA algorithms involve the use
of machine learning, such as support vector machines (SVMs)
and neural networks (NN), to blindly predict image quality
scores. Research has shown that the accuracy of NR-IQA
depends heavily on designing elaborate features. Natural scene
statistics (NSS) [1], [2] is one of the most successful features
under the assumption that natural images have statistical reg-
ularity that is altered when distortions are introduced. Due to
the difficulties involved in obtaining reliable features, research
on NR-IQA has progressed significantly since NSS. Deep
learning has lately been adopted in a few NR-IQA studies
as a different method from conventional approaches based on
NSS [3], [4]. However, most such studies have continued to
use handcrafted features, and deep models, such as deep belief
networks (DBNs) and stacked autoencoders, have been used
in place of conventional regression machines.

A. Problems of Applying CNNs to NR-IQA
Convolutional neural networks (CNNs) form the most popu-

lar deep learning model nowadays due to their strong represen-
tation capability and impressive performance. CNNs have been
successfully applied to various computer vision and image
processing problems.

The performance of deep neural networks heavily depends
on the number of training data. However, the currently avail-
able IQA databases are much smaller compared to the typical
computer vision data set for deep learning. For example,
the LIVE IQA database [5] contains 174–233 images for
each distortion type, while the widely used data set for image
recognition contain more than 1.2 million pieces of labeled
data [6]. Moreover, obtaining large-scale reliable human sub-
jective labels is very difficult. Unlike classification labels,
constructing an IQA database requires a complex and time-
consuming psychometric experiment. To expand the training
data set, one can use data augmentation techniques such as
rotation, cropping, and horizontal reflection. Unfortunately,
any transformation of images would affect perceptual quality
scores.

Moreover, the perceptual process of the human visual sys-
tem (HVS) includes multiple complex processes, which makes
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Fig. 1. Overall flowchart of DIQA. The training process consists of two stages: regression onto objective error maps and regression onto subjective scores.
The squares with red “train” (blue “train”) indicates that the subnetwork will be trained in the first (second) stage.

training of a deep model with limited data set even harder. For
example, the visual sensitivity of the HVS varies according to
spatial frequency of stimuli [7], [8], and the presence of texture
hinders other spatially coincident image changes [9]. In addi-
tion, the perceived signals go through bandpass, multiscale,
and directional decompositions in the visual cortex [10]. Such
complex behaviors need to be embedded in the data set with
human subjective labels. However, it is difficult to claim that
a small data set can represent general visual stimuli, which
results in an overfitting problem.

B. Proposed Framework

To tackle this problem, we propose a novel NR-IQA frame-
work called deep blind image quality assessor (DIQA). The
DIQA is trained in two separated stages as shown in Fig. 1.
In the first stage, an objective error map is used as a proxy
training target to expand the data set labels. The existing
database provides a subjective score for each distorted image.
In other words, one training data item includes a mapping
from a 3-D tensor (width, height, and channel) to a scalar
value. Given a distorted image Id and a scalar subjective
score S, the optimal parameter of a model θ should be
sought by arg minθ ‖ f (Id ; θ)−S‖2, where f (·) is a prediction
function. In contrast, the DIQA utilizes reference images
during training and generates a 2-D intermediate target called
the objective error map. Please note that the reference images
are accessible during training as long as the database provides
them, and the ground-truth objective error map can be easily
derived by comparing the reference and distorted images. By
expanding the training target to a 2-D error map e, we have
arg minθ

∑
(i, j ) ‖ f (Id ; θ)(i, j) − e(i, j)‖2, where (i, j) is a

pixel index. In other words, it yields the same effect of
increasing the number of training pairs up to the dimensions of
the error map by giving more constraints. Once the deep neural
network is trained with sufficient training data set, the model is
fine tuned to predict the subjective scores. Since the objective
error map is somewhat correlated with the subjective score,
the second stage can be trained without great difficulty by
using even a limited data set. In the end, our model can
predict the subjective scores without accessing the ground-
truth objective error maps during testing.

Overall, we resolve the NR-IQA problem by dividing it
into the objective distortion and the HVS-related parts. In the

objective distortion part, a pixelwise objective error map is
predicted using the CNN model. In the HVS-related part,
the model further learns the human visual perception behavior.

However, there persists another problem in the objective
error map prediction phase. When severe distortion is applied
to an image and its high-frequency detail is lost, its error
map obtains more high-frequency components. Meanwhile
the distorted image does not have high-frequency details.
Therefore, without the reference image, it is difficult to predict
an accurate error map from the distorted image, in particular,
on homogeneous regions. To avoid this problem, we propose
deriving a reliability map by measuring textural strength to
compensate for the inaccuracy of the error map.

To visualize and analyze the learned human visual sensitiv-
ity, we further propose an alternative model, which we call
DIQA-SENS. We use two separated CNN branches where
each is dedicated to learn the objective distortion and the
human visual sensitivity, respectively. In particular, the visual
sensitivity branch predicts local visual weights of the objective
error map by seeing the triplet of a distorted image, its
objective error map, and its ground-truth subjective score. The
multiplication of the objective error map and the sensitivity
map results in a perceptual error map, which can explain the
degree of distortion in the perspective of the HVS.

Our contributions can be summarized as follows.

1) Using the simple objective error map, the training data
set can be easily augmented, and the deep CNN model
can be trained without an overfitting problem.

2) DIQA is trained via end-to-end optimization so that the
parameters can be thoroughly optimized to achieve state-
of-the-art correlation with human subjective scores.

3) DIQA-SENS generates the objective error map and the
perceptual error maps as intermediate results, which
provide an intuitive analysis of local artifacts given
distorted images.

The remainder of this paper is organized as follows.
Section II introduces related work and relatively recent
NR-IQA algorithms that use deep learning methods and
pooling methods. Section III describes the DIQA framework,
including the architecture of our model, reliability map pre-
diction, and training methods in detail. Section IV provides
comprehensive ablation studies of DIQA. In addition, a statis-
tical evaluation of the proposed method is provided. Section V
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introduces an alternative model of the DIQA to analyze the
learned perceptual error maps. The visualization and analysis
results of the trained deep model are presented. Conclusions
and suggestions for future work are provided in Section VI.

II. RELATED WORK

Most previously proposed NR-IQA methods were devel-
oped based on the machine learning framework. Researchers
attempted to design elaborate features that could discriminate
distorted images from the pristine images. One popular feature
is a family of NSS that assumes that natural scenes contain
statistical regularities. Various types of NSS features have been
defined in transformation and spatial domains in the literature.
Moorthy and Bovik [1] extracted features in the wavelet
domain, and Saad et al. [2] defined them in the discrete
cosine transform coefficients. Recently, Mittal et al. [11], [12]
captured NSS features using only locally normalized images
without any domain transformation.

In addition to NSS features, various kinds of features have
been developed for NR-IQA. Li et al. [13] employed a gen-
eral regression neural network relative to phase congruency,
entropy, and image gradients. Tang et al. [14] considered
such multiple features as natural image statistics, distortion
textures, blur, and noise statistics. Meanwhile, in [15] and [16],
dictionary learning was adapted to capture effective features
from the raw patches. Most of these studies were based on
conventional machine learning algorithms, such as SVMs and
NNs. Since such models have a limited number of parameters,
the size of the data set was not a significant issue. However,
they yielded lower accuracies than FR-IQA metrics.

Relatively recently, attempts have been made to adopt a
deep learning technique for the NR-IQA problem to enhance
prediction accuracy [42]. Hou et al. [3] used a DBN, where
NSS-related features were extracted in the wavelet domain
and fed into the deep model. Similarly, Li et al. [4] derived
NSS-related features from Shearlet-transformed images. The
extracted features were then regressed onto a subjective score
using a stacked autoencoder. Lv et al. [17] used DoG features
and the stacked autoencoder. Ghadiyaram and Bovik [18]
attempted to capture a large number of NSS features using
multiple transforms and then used a DBN to predict the sub-
jective score. However, most studies have used the deep model
in place of the conventional regression machine. This involved
designing handcrafted features of sufficiently small size such
that the neural networks were not sufficiently deep to take full
advantage of deep learning. Kang et al. [19] applied a CNN to
the NR-IQA problem without handcrafted features to conduct
end-to-end optimization. To resolve the data set size, an input
image was divided into multiple patches, and an equal mean
opinion score (MOS) was used for all patches in an image.
Strictly speaking, this approach cannot reflect properties of the
HVS, the pixelwise perceptual quality of which varies over
the spatial domain. Bosse et al. [20] adopted a deep CNN
model with 12 layers. The loss function was similar to [19];
however, they suggested an additional model, which learns the
individual importance of each patch. Recently, we proposed a
CNN-based NR-IQA framework, where FR-IQA metrics were

employed as intermediate training targets of the CNN [21],
and the statistical pooling over minibatch was introduced for
end-to-end optimization. On the other hand, to overcome the
limited training set, other attempts have been made by gener-
ating discriminable image pairs [22], or employing multitask
learning [23].

In contrast to past work, the DIQA resolves the issue
of the lack of a data set by utilizing reference images in
training to generate an intermediate target. Different from
our previous work [21], the DIQA does not depends on
complicated FR-IQA metrics. In addition, the DIQA uses only
convolutional layers in the pretraining stage so that the model
can be deeper and can use a larger proxy target. Our proposed
framework achieves state-of-the-art prediction accuracy using
the strong representation capability of CNN models, which is
discussed in Section IV.

III. DEEP IMAGE QUALITY ASSESSMENT PREDICTOR

The overall framework of the DIQA is shown in Fig. 1.
Once an input-distorted image is normalized (Section III-B),
it passes through two paths: 1) a CNN branch and 2) a
reliability map prediction branch (Section III-C). In the first
training stage, the CNN branch is trained to predict an
objective error map e (Section III-D). The ground-truth error
map egt is obtained by comparing the reference and distorted
images. In the second stage, the model is further trained to
predict a human subjective score S (Section III-E). In each
stage, the reliability map r is supplemented to compensate the
inaccuracy on homogeneous regions.

A. Model Architecture

The design of the proposed CNN architecture is motivated
by [24]. The structure of the DIQA is shown in Fig. 2. For
the error map prediction part, the model consists of only
convolutional layers and zeros are padded around the border
before each convolution; therefore, the output does not lose
relative pixel position information. Each layer except the last
one has a 3 × 3 filter and a rectified linear unit (ReLU) [25].
We call the output of Conv8 as a feature map (filled with
yellow in Fig. 2), which is reused for the second stage of
training. In the last layer of the first training stage, the feature
map is reduced to a one-channel objective error map using
a 1 × 1 filter without nonlinear activation. If we directly
feed the predicted error map into the modules of the second
stage, it would hinder the abundant representation of features,
because there is only one channel in the error map. To avoid
this problem, we employ a simple linear combination over
channels in Conv9, so that we can generate a meaningful
feature map closely related to the ground-truth error map,
meanwhile having multiple channels for better representation.
The size of the output of Conv9 is 1/4 times the original
input image. Correspondingly, the ground-truth objective error
maps are downscaled by 1/4. For the downsampling opera-
tion, convolution with a stride of 2 is used. In the second
training stage, the extracted feature map is fed into the global
average pooling layer followed by two fully connected layers.
We additionally use two handcrafted features, which will be
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Fig. 2. Architecture of the objective pixel error map prediction subnetwork. “Conv” indicates the convolutional layers, and “FC” indicates fully connected
layers. The text below “Conv” indicates its size of filter. The red (blue) arrows indicate the flows of the first (second) stage.

explained later. The handcrafted features are concatenated with
the pooled features before FC1, and then regressed onto a
subjective score. For convenience, we denote the procedure
from Conv1 to Conv8 by f (·), the operation of Conv9 by g(·),
and the procedure including FC1 and FC2 by h(·).

B. Image Normalization

As a preprocessing, the input images are first converted
to grayscale, and they are subtracted from their low-pass
filtered images. Let Ir be a reference image and Id be the
corresponding distorted image. The normalized versions are
then denoted by Îr and Îd , respectively. The low-frequency
image is obtained by downscaling the input image to 1/4 and
upscaling it again to the original size, which is denoted by
I low
r and I low

d . A Gaussian low-pass filter and subsampling
were used to resize the images.

There are two reasons for this simple normalization. First,
image distortions barely affect the low-frequency component
of images. For example, white Gaussian noise (WN) adds
random high-frequency components to images, GB removes
high-frequency details, and blocking artifacts introduce new
high-frequency edges. The distortions due to JPEG and
JPEG2000 (JP2K) can be modeled by a combination of these
artifacts [26]. Second, the HVS is not sensitive to a change
in the low-frequency band. The CSF shows a bandpass filter
shape peaking at approximately four cycles per degree, and
sensitivity drops rapidly at low frequency [8]. Although there
are small distortions in the low-frequency band, the HVS
hardly notices them. Though there are benefits of employing
this normalization scheme, there is also a drawback of losing
information. To compensate this, two handcrafted features are
supplemented in the second training stage.

C. Reliability Map Prediction

Many distortions, such as quantization by JP2K, or GB,
make images blurry. However, unlike FR-IQA, it is difficult
to determine whether the blurry region is distorted without
knowing its pristine image. Furthermore, as severe distortion
is applied to an image, its error map receives more high-
frequency components. Meanwhile, the distorted image loses
more high-frequency details, as shown in Fig. 3. Therefore,
the model is likely to fail to predict the objective error map
on homogeneous regions.

Fig. 3. Examples of estimated reliability maps. (a)–(c) JPEG2000 distorted
images in the TID2013 data set at the distortion levels of 1, 3, and 5.
(d)–(f) Difference maps derived by using (5). (g)–(i) Reliability maps
of (a)–(c).

To avoid this problem, the reliability of the predicted error
map is estimated by measuring the texture strength of the
distorted image. Our assumption is that blurry regions have
lower reliability than textured regions. Preprocessed images
that are bandpassed are used to measure the reliability map as

r = 2

1 + exp(−α(| Îd |)) − 1 (1)

where α controls the saturation property of the reliability
map. To normalize the reliability map, the positive half of
the sigmoid function is used in (1), so that pixels with small
values are assigned sufficiently large reliability values.

The images shown in Fig. 3(a)–(c) are distorted by
JPEG2000 at different levels, and the corresponding reliability
maps with α = 1 are shown in Fig. 3(d)–(f). It can be easily
checked that it is difficult to derive an accurate error map (f)
from severely distorted images (c). The estimated reliability
maps are shown in Fig. 3(g)–(i). As shown in Fig. 3(i),
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Fig. 4. Histograms of error maps with different values of p. (a) p = 1.
(b) p = 0.2.

the reliability map has zero values, where there is no mean-
ingful spatial information in Fig. 3(c).

To prevent the reliability map from directly affecting the
predicted score, it is divided by its average as

r̂ = 1
1

Hr·Wr

∑
(i, j ) r(i, j)

r (2)

where Hr and Wr are the height and width of r.

D. Learning Objective Error Map

In the first stage of training, the objective error maps are
used as proxy regression targets to get the effect of increasing
data. The loss function is defined by the mean squared error
between the predicted and ground-truth error maps

L1( Îd ; θ f , θg) = ‖g( f ( Îd ; θ f ) − egt; θg) � r̂‖2
2 (3)

where f (·) and g(·) are defined in Fig. 2, θ represents the
CNN’s parameters, and egt is defined by

egt = err( Îr , Îd ). (4)

Here, any error metric function can be used for err(·). In our
experiment, we chose the exponent difference function

egt = | Îr − Îd |p (5)

where p is the exponent number. When an absolute differ-
ence ( p = 1) is used for the error metric function, most
values in the error maps are small numbers close to zero.
In this case, the model tends to fail to predict an accurate
error map. When the training process converges, most values
were zero in the experiment. Therefore, we chose p = 0.2 to
spread the distribution of the difference map over the higher
values. Fig. 4 shows a comparison of histograms for the two
exponent numbers, where the histogram of p = 0.2 has a
broader distribution between 0 and 1.

E. Learning Subjective Opinion

Once the model is trained to predict the objective error
maps, we move to the next training stage, where DIQA is
trained to predict subjective scores. To achieve this, the trained
subnetwork f (·) is connected to a global average pooling layer
followed by the fully connected layers as shown in Fig. 2. The
feature map is averaged over spatial domain leading to a 128-D
feature vector.

Here, to compensate the lost information, we consider two
additional handcrafted features: the mean of the nonnormal-
ized reliability map μr and the standard deviation of the low-
frequency of distorted image σI low

d
. If the distorted image is

too blurred, the reliable area becomes too small. In this case,
the overall textural strength of the distorted image becomes
an important feature, which can be captured by μr. Therefore,
the loss function is defined as

L2(Id ; θ f , θh) = ‖(h(v, μr, σI low
d

; θh) − S)‖2
2 (6)

where f (·) is a nonlinear regression function, S is the ground-
truth subjective score of the input-distorted image, and v is the
pooled feature vector. v is defined by:

v = G AP( f ( Îd ; θ f )) (7)

where G AP indicates the global average pooling operation.

F. Training

In this section, we describe the training details of the
DIQA. The layers for error map prediction are first trained by
minimizing (3), where the ground-truth error map is derived
from (5). When the first stage converges to a sufficient extent,
(6) is then minimized in the second stage.

Since zeros are padded before each convolution, the feature
maps near the borders tend to be zeros. Therefore, during the
minimization of the loss functions in (3) and (6), we ignored
pixels near borders around the error and the perceptual error
maps. Each of four rows or columns for each border was
excluded in the experiment, which compensated for informa-
tion loss in the last two convolutional layers.

For better convergence of optimization, the adaptive
moment estimation optimizer (ADAM) [27] with Nesterov
momentum [28] was employed to alter the regular stochas-
tic gradient descent method. The default hyperparameters
suggested in the literature [27] were used for the ADAM,
and the momentum parameter was set to 0.9. The learning
rate was set differently for each data set from 2 × 10−4 to
5×10−4. We chose the optimal value empirically. In addition,
during training of the second stage, the learning rates for the
pretrained layers were multiplied by 0.1. For weight decay,
L2 regularization was applied to all the layers (L2 penalty
multiplied by 5 × 10−4).

G. Patch-Based Training

In the DIQA framework, the sizes of input images must
be fixed to train the model on a GPU. Therefore, to train the
DIQA using images of various sizes, such as in the LIVE IQA
database [5], each input image should be divided into multiple
patches of the same size. Here, the step of the sliding window
is determined by the patch size and the number of ignored
pixels around the borders to avoid overlapping regions when
the perceptual error map is reconstructed. When the ignored
pixels around the borders are four, the step should be 4, where
steppatch = sizepatch −32 is determined by 4×2 (both sides of
the border) ×4 (upscaling by 4). In the experiment with the
LIVE IQA database, the patch size was 112 × 112 and each
step was 80 × 80.

In addition, during the training of the second stage, all
patches composing an image should be in the same mini-
batch [21], so that v, μr, and σI low

d
can be derived from the

reconstructed perceptual error and reliability maps.
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TABLE I

COMPARISON OF IQA DATABASES IN TERMS OF NUMBERS OF REF-
ERENCE (REF.) IMAGES, DISTORTED (DIST.) IMAGES, DISTORTION

TYPES, AND TYPE OF SUBJECTIVE SCORES

IV. EXPERIMENTS AND ANALYSIS

A. Database

Six different IQA databases were used to evaluate the
proposed algorithm: LIVE IQA database [5], CSIQ [29],
TID2013 [30], LIVE multiply distorted (LIVE MD) data-
base [31], LIVE in the wild challenge (LIVE challenge)
database [32], and Waterloo exploration database (WED) [33].
The summary of each database is tabulated in Table I. The
LIVE IQA database contains five distortion types: JP2K
compression, WN, GB, and Rayleigh fast-fading (FF) channel
distortion. The CSIQ database includes six distortion types:
JPEG, JP2K, WN, GB, pink Gaussian noise (PGN), and global
contrast decrements [contrast distortion (CTD)]. TID2013 con-
tains the largest number of distortion types at five levels of
degradation. The LIVE MD database includes images distorted
by two multiple types of distortion. One is associated with
images corrupted by GB followed by JPEG (GB+JPEG) and
the other one is associated with images corrupted by GB
followed by WN (GB+WN). The LIVE in the wild challenge
database covers the widest variety of contents. In contrast
to the other ones, each distortion is caused by a regular
capturing process using mobile cameras, which includes low-
light blur and noise, motion blur, overexposure, underexpo-
sure, compression errors and their combination. Therefore,
there are no reference images in the LIVE challenge database.
Recently, the Waterloo exploration database [33] was built in
response to the need for large-scale databases. Four synthetic
distortions were used: JPEG, JP2K, GB, and WN. WED
does not include any subjective quality scores. Instead, new
evaluation strategies that do not require human opinions are
proposed.

Regarding the subjective scores, in the case of differential
MOS (DMOS), the lower values indicate higher perceptual
quality, whereas the higher values indicate higher visual qual-
ity in MOS. All the subjective scores were rescaled to [0, 1],
and DMOSs were reversed to match with MOSs.

B. Evaluation Metrics

To evaluate the performances of the IQA algorithms,
we used two standard measures, i.e., Spearman’s rank-order
correlation coefficient (SRCC) and Pearson’s linear correlation
coefficient (PLCC) by following [34]. First, the SRCC is

TABLE II

SRCC AND PLCC COMPARISON FOR DIFFERENT EPOCHS IN THE
FIRST STAGE ON THE LIVE IQA AND CSIQ DATABASES

defined by

SRCC = 1 − 6
∑

i d2
i

n(n2 − 1)
(8)

where di is the difference between the predicted score and
ground-truth score of the i th image, and n is the number of
images. In addition, the PLCC can be derived by

PLCC =
∑

i (Ŝi − μŜ)(Si − μS)
√∑

i (Ŝi − μŜ)2
√ ∑

i (Si − μS)2
(9)

where Ŝi and Si are the predicted and ground-truth subjective
scores of the i th image, and μŜ and μS indicate the average
of each.

In addition, we use three evaluation criteria: the pris-
tine/distorted image discriminability test (D-test), the listwise
ranking consistency test (L-test), and the pairwise preference
consistency test (P-test) [33]. The D-test examines whether
an IQA algorithm is able to discriminate the pristine images
from distorted ones. The L-test evaluates if an IQA model
consistently ranks images whose distortion type and con-
tent are same, but distortion level varies. The P-test checks
the preference concordance of an IQA measure on quality-
discriminable image pairs.

C. Ablation Studies

To investigate the contribution of each module and training
scheme, we utilized different combinations of them. In other
words, each ablated model needs to be repeatedly trained and
tested while dividing training and testing sets randomly, which
leads to a huge training time of deep CNN models. Thus,
learning and testing were conducted on LIVE IQA and CSIQ,
which are reasonable with respect to the data size.

1) Pretraining With Objective Error Map: We first studied
the effects of training epochs in the first stage. In Table II,
the models trained with different numbers of epochs in the
first stage are compared. We tested the pretrained model with
four different epochs and conducted the second stage to obtain
the SRCC and PLCC on LIVE IQA and CSIQ, respectively.
For all the epochs, the same neural network structure was
used. The model named DIQA-BASE was directly trained to
predict the subjective score with the same learning rate for all
layers. Generally, the pretrained models with any epochs out-
performed the DIQA-BASE. The best epochs for the first stage
were different for each database. On LIVE IQA, pretraining
with 20 epochs showed the best results, while 60 epochs do
for CSIQ. For TID2013 and LIVE MD, we found that 80 and
100 epochs yielded the best performances, respectively.
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Fig. 5. Gains in SRCC by using handcrafted features on the CSIQ and TID2013 databases. HC1: using only σI low
d

. HC2: using only μr. Both: using both

the features.

TABLE III

SRCC AND PLCC COMPARISON WITH AND WITHOUT RELIABILITY

MAPS ON THE LIVE IQA AND CSIQ DATABASES

TABLE IV

SRCC AND PLCC COMPARISON WITH AND WITHOUT IMAGE

NORMALIZATION ON THE LIVE IQA AND CSIQ DATABASES

2) Reliability Map: To test the contribution of the reliability
map, the results of different settings are compared in Table III.
In most of the cases, there was a performance gain when
the reliability map is used, which confirmed the importance
of the reliability map. We further analyzed the effect of
hyperparameter of the reliability maps. As α of the reliability
map increases, the reliable region increases. In other words,
with larger α, the model considers more homogeneous pixels.
To examine the effect of α, we compared three different
values (α = 0.6, 1.0, and 1.4). In general, there was no big
difference between the three settings, and α = 1.0 showed
nice accuracies in common on all the databases.

3) Image Normalization: The experimental results with and
without image normalization on the LIVE IQA and CSIQ data-
bases are shown in Table IV. Using input data normalization
significantly increased both the SRCC and PLCC. In particular,
there was a large gap on the CSIQ database.

4) Handcrafted Features: We further investigated the effects
of the adopted handcrafted features, σI low

d
and μr, on the

performance. Since they were designed to capture specific
distortion statistics which could not be detected due to the
normalization and reliability map processing, we investigated
their effects on each individual distortion type in CSIQ and
TID2013. We omitted the results on the LIVE IQA and LIVE
MD databases, since there were almost no gains. Fig. 5 shows
the gains in the SRCC according to each individual distortion
type when using the handcrafted features. In general, using
both handcrafted features led to a performance gain when
all the distortion types were considered on the both data

TABLE V

SRCC AND PLCC COMPARISON OF DIFFERENT PROXY TARGETS

IN THE FIRST STAGE ON THE LIVE IQA AND CSIQ DATABASES

sets (0.0123 on CSIQ and 0.0246 on TID2013). On the CSIQ
database, using σI low

d
resulted in a large gain on CTD, and

using both also yielded significant gains on WN, GB, and
CTD. For the TID2013 database, there was a large gain on
block (local blockwise distortions) and contrast change (CTC)
by using either handcrafted feature. In particular, using both
features resulted in gains on change of color saturation (CCS)
and mean shift (MS). Unfortunately, the achieved SRCC on
the CCS distortion was still a negative value.

In Fig. 5, using the handcrafted features sometimes lead to
a negative effect. One possible reason of this phenomenon is
that DIQA was trained to minimize the summed errors of all
the distortion types. As a result, when the model is adapted
to a specific type, it could be less accurate on the other types.
In addition, the objective function of a deep CNN has lots
of local minima and saddle points. Since massive number of
parameters are initialized randomly, the final optimal point in
the parameter space can be very different, which may lead to
inconsistent results on some distortion types.

5) Proxy Training Targets: We tested the alternative training
targets in the first stage. As proposed in [21], SSIM [35] and
FSIM [36] were used to generate the proxy targets. To train the
models, we used the same hyper parameters. The experimental
results on the LIVE IQA and CSIQ databases are compared
in Table V. Interestingly, the model using the objective error
map ranked first and was followed by using SSIM and FSIM.
One possible reason is due to usage of insufficiently optimized
hyper parameters of using the SSIM and FSIM. Another reason
would be the size of the proxy targets. Compared with [21],
the DIQA uses eight times larger proxy targets by using
the fully convolutional layers. Since FSIM highlights edges
especially, using an over detailed FSIM map can cause a
serious overfitting problem.

D. Effect of Architecture Depth

To examine the effect of architecture depth, we tested
six different numbers of convolutional layers of
DIQA (from 5 to 10). In the shortest setting, the layers
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TABLE VI

SRCC AND PLCC COMPARISON ON THE FIVE DATABASES. ITALICS INDICATE DEEP LEARNING-BASED METHODS

Fig. 6. Comparison of SRCC and PLCC according to model depth.

Conv1–Conv4 and Conv8 were used. In the longest setting,
two 3 × 3 convolutional layers with 64 filters were added
after the Conv6 layer. Fig. 6 shows the accuracy comparison
between the six models on the LIVE IQA database. When
the depth was five, the SRCC and PLCC were the lowest.
However, as the depth increased, the correlations scores
almost saturated around 0.97. It can be concluded that the
eight convolutional layers are rational for our framework.

E. Benchmark

1) Performance on Individual Databases: To train and test
the DIQA, we randomly divided the reference images into
two subsets, 80% for training and 20% for testing. Then,
the corresponding distorted images were divided into train-
ing and testing sets so that there was no overlap between
the two. Two training stages shared the same training and
testing sets. To increase the number of training data items,
horizontally flipped images were supplemented. In the second
stage, an early stopping method was used to avoid overfitting.
Following the recommendation in [34], we evaluated the per-
formance of the IQA algorithms using two standard measures:
SRCC and PLCC.

We compared DIQA with four FR-IQA methods (PSNR,
SSIM [35], FSIMc [36], and DeepQA [37]) and seven NR-IQA
methods (BLIINDS II [2], BRISQUE [11], CORNIA [15],
ILNIQE [38], GMLOG [39], HOSA [16], and NRSL [40]).
In addition, five deep learning-based NR-IQA methods were
benchmarked: SESANIA [4], CNN [19], MGDNN [17], deep-
IQA [20], and BIECON [21]. For the D-, L-, and P-tests,
dipIQ [22] and MEON [23] are additionally compared with.

First, we evaluated all the methods on each individual
database as shown in Table VI. Since there is no reference
image in the LIVE challenge database, the FR-IQA methods
were not tested on this. To train the DIQA on LIVE challenge,
the model was pretrained on TID2013, and then the second
training stage was conducted on LIVE challenge. The corre-
lation coefficients of the DIQA were averaged after the pro-
cedure was repeated 20 times while dividing the training and
testing sets randomly in order to eliminate performance bias.
The best three models among the NR-IQA methods for each
evaluation criterion are shown in bold. The weighted average
of the SRCC and PLCC over the four databases (LIVE, CSIQ,
TID2013, and LIVE MD) is also shown in the last column.
The weight to each database is proportional to the number of
distorted images in that database.

Among NR-IQA methods, deep learning-based methods
were generally superior to the previous methods. In particular,
the DIQA achieved the highest correlation on most data-
bases as shown in the weighted average column. Regard-
ing the LIVE MD database, it contains only 15 reference
images, which would hamper the training of the DIQA and
DIQA-BASE.

2) Performance on Individual Distortion Types: In
Table VII, the SRCC and PLCC of the FR- and NR-IQA
algorithms are compared according to the individual distortion
type. The DIQA models were trained with all the distortion
types from the training set (80%), and tested on the individual
distortion type from the testing set (20%). The best three
models among the NR-IQA methods are shown in bold.

Even when each distortion type was tested separately,
the DIQA was the best model on most distortion types. The
DIQA in particular showed high accuracy of prediction in
white noise. For FF in the LIVE IQA database, it outperformed
the other NR-IQA methods by a wide margin. Most previous
methods failed on several distortion types in TID2013, such as
JGTE, NEPN, Block, MS, CTF, and CN. However, the DIQA
achieved remarkably enhanced accuracies on those distortion
types except for CCS. Since the DIQA methods used grayscale



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

KIM et al.: DEEP CNN-BASED BLIND IMAGE QUALITY PREDICTOR 9

TABLE VII

SRCC COMPARISON ON INDIVIDUAL DISTORTION TYPES. ITALICS INDICATE DEEP LEARNING-BASED METHODS

TABLE VIII

D-TEST, L-TEST, AND P-TEST RESULTS ON WED

images, they failed on CCS where color information is the
major cue of distortion.

3) Performance on WED: To evaluate the DIQA on WED,
we used two models trained on the full sets of the LIVE
IQA and CSIQ databases, respectively. For both the models,
we used only four common distortion types (white noise, GB,
JPEG, and JPEG2000). In Table VIII, the results of the D-test,
L-test, and P-test on WED are reported. The DIQA models
trained on LIVE IQA and CSIQ are named DIQA (LIVE IQA)
and DIQA (CSIQ), respectively. The three best models among
the NR-IQA methods are shown in bold. The DIQA (LIVE

IQA) outperformed all previous NR-IQA models in the D-test,
which indicates that our model figure out the existence of
distortions well. In the L-test and P-test, dipIQ yielded the
best, since it was trained on a large number of natural images.
It also achieved competitive scores in both the L-test and
P-test. However, the DIQA (CSIQ) was not competitive in the
three tests on WED. Comparing with the CNN-based models,
the DIQA and MEON showed the similar performances in
the P-test, while the scores of the DIQA were the best in the
D-test and L-test.

F. Cross Data Set Test

To evaluate the generalizability of the DIQA, the model was
trained using all the images from one database, and then tested
on another database. In the CSIQ and TID2013 databases,
four overlapping distortion types (white noise, GB, JPEG, and
JPEG2000) were used. The results of the cross-data set test
are shown in Table IX. For each test, the best two models are
shown in bold. Even though the DIQA can easily be over
adapted to the specific data set due to a large number of
parameters, the DIQA generally yielded a competitive SRCC.
In most tests, the DIQA was one of the best two models.
It can be concluded that the DIQA performs well in terms
of subjective score prediction, and its performance does not
depend on the database.
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Fig. 7. Overall structure of DIQA-SENS. An input distorted image is normalized and goes through three paths: 1) objective error map prediction; 2) sensitivity
map prediction; and 3) reliability map prediction. In the first stage, the subnetwork of objective error map prediction is trained, and then the subnetworks of
sensitivity map prediction and nonlinear regression are trained in the second stage.

TABLE IX

SRCC COMPARISON OF THE CROSS DATA SET TEST

V. LEARNING TO VISUALIZE PERCEPTUAL ERROR MAP

To study and analyze what was learned by a deep model,
we additionally propose a variant version of the DIQA,
named DIQA-SENS. Different from the normal model, the
DIQA-SENS contains three paths: 1) objective error map
prediction, 2) sensitivity map prediction, and 3) reliability map
prediction. The overview of DIQA-SENS is shown in Fig. 7.
The same architecture of the DIQA (from Conv1 to Conv9 in
Fig. 2) is used for the objective error map prediction and
the sensitivity map prediction subnetworks, respectively. The
hidden layer of the fully connected layer has 20 perceptrons.
Its training scheme is similar to that of the DIQA. However,
the objective error map prediction subnetwork is frozen while
the sensitivity map prediction subnetwork is updated. In addi-
tion, the perceptual error map is obtained by multiplying
the predicted error and sensitivity maps, and then directly
regressed onto the subjective score.

A. Learning Visual Weight of Error Map

Because there is no ground-truth sensitivity map available,
the model cannot be trained to directly minimize the pixelwise
difference. Instead, we show a triplet of a distorted image,
its objective error map, and its corresponding ground-truth
subjective score to the model. Then, the model seeks the
optimal weights of the pixels in the error map such that the
predicted score approaches the subjective score. The visual
sensitivity map s is first derived from the CNN model. The
perceptual error map p is then defined by

p = s � e � r̂ (10)

s = fsens( Îd ; θsens) (11)

where � is the Hadamard product, fsens(·) indicates the second
subnetwork with parameter θ2, and e is the predicted error
map, e = ferr( Îd ; θerr), which is obtained from the error map
prediction subnetwork ferr(·).

For the subjective score regression, the average of p and
two handcrafted features μr and σI low

d
are used as follows:

LSENS(Id ; θ fsens, θh′) = ‖(h′(μp, μr, σI low
d

; θh′) − S)‖2
2 (12)

where h′(·) is a regression function of the DIQA-SENS.
When the model is optimized to minimize (12) without

any constraints, it generates a noisy sensitivity map, which
is not desirable. Therefore, we apply a smoothing constraint
to penalize the high frequency in the sensitivity map using the
total variation (TV) L2 norm.

TV(s) = 1

Hs · Ws

∑

(i, j )

(shorz(i, j)2 + svert(i, j)2) (13)

where Hs and Ws indicate the height and width of s, and shorz
and svert are Sobel-filtered sensitivity maps in the horizontal
and vertical directions, respectively.

The final loss function of the DIQA-SENS is

LDIQA-SENS( Îd; θ1, θ2) = wsLs + wTVTV (14)

where ws and wTV are weights of two losses. In the experi-
ment, we set ws = 10 and wTV = 10−4.

B. Experimental Results

The experimental results of the DIQA-SENS are compared
with the DIQA and DIQA-BASE in Table X. The SRCC and
PLCC of the DIQA-SENS are marginally lower than the DIQA
and higher than the DIQA-BASE. The decreased performance
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Fig. 8. Examples of predicted sensitivity maps with various TV regularization weights. (a) Distorted images. (b)–(e) Predicted sensitivity maps with different
TV regularization weights.

Fig. 9. Examples of predicted error maps. (a), (f), and (k) Distorted images with JPEG2000, white noise, and GB. (b), (g), and (l) Ground-truth error maps.
(c), (h), and (r) Predicted error maps. (d), (i), and (n) Ground-truth error maps multiplied by reliability maps. (e), (j), and (t) Predicted error maps multiplied
by reliability maps.

TABLE X

SRCC AND PLCC COMPARISON OF DIFFERENT COMBINATIONS

OF FEATURE MAPS ON THE LIVE IQA AND CSIQ DATABASES

might be caused by one-channel feature map, which is fed into
the global average pooling layer. However, the DIQA-SENS
can generate the perceptual error maps, which can explain the
local importance of the objective error map.

To investigate the effects of TV regularization on prediction
accuracy, five weights (wTV = 0, 10−4, 10−3, 10−2, and
10−1) were tested. Fig. 8 shows the predicted sensitivity maps
according to the TV regularization weight. When the weight
was very small (wTV = 10−4), the overall sensitivity map
tended to be zeros, and only the small regions had high values.
This indicates that most regions were regarded as distorted
pixels; however, this did not provide a clear interpretation
from the perspective of the HVS. As TV weight increased,

the distribution of the sensitivity maps tended to be more
uniform, as shown in Fig. 8(e) and (j).

The weight of TV also affected the prediction accuracy of
the trained model. The models with sufficient magnitudes of
weights (wTV = 10−2 and 10−1) for the TV regularization
term showed higher SRCC, as shown in Table XI. Too sparse
a sensitivity map, as in Fig. 8(b) and (g), could not generalize
over the various database and distortion types well. It can be
concluded that the TV term actually works as regularization
during training and enhanced testing accuracy.

C. Error and Perceptual Error Maps Visualization

Following the training of the error map prediction stage,
the model can generate an objective error map without using
reference images. In Fig. 9, the predicted error maps and
their ground-truth versions are compared. The “Lighthouse2”
image from the LIVE database was used to show the results.
This image was not included in the training set. Fig. 9 shows
the prediction results of the error map. The images in the first
column are distorted images with JEPG2000, white noise, and
GB, respectively. In the second and third columns, the darker
regions indicate more distorted pixels. For white noise, dis-
tortion was distributed uniformly over the image as shown



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

12 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

Fig. 10. Examples of perceptual error maps. (c), (h), and (r) Distorted images with JPEG2000, white noise, and GB. (b), (g), and (l) Reliability maps.
(c), (h), and (r) Predicted sensitivity maps. (d), (i), and (n) Perceptual error maps. (e), (j), and (t) Comparison maps between objective and perceptual error
maps.

TABLE XI

SRCC AND PLCC COMPARISON FOR EACH TV
REGULARIZATION WEIGHT ON THE LIVE DATABASE

in Fig. 9(g), and this was predicted well in Fig. 9(h). Since
regions with low reliability were ignored during the training of
the error map, the prediction was inaccurate on homogeneous
regions. In the fourth and fifth columns, the ground-truth and
predicted error maps are multiplied by the reliability maps
as in (4), such that the inaccurate regions were ignored.
The images in the last column are images actually used for
NR-IQA.

The predicted perceptual error maps are shown in Fig. 10.
The reliability maps [Fig. 10(b), (g), and (l)] emphasized high-
frequency components, such as edges and complex textures.
To analyze human visual sensitivity, we observed the percep-
tual error map rather than the sensitivity map. The role of the
sensitivity map is tuning the objective error map by weighting.
It is clear that low values in the perceptual error map can
be regarded as perceptually distorted regions. However, it is
difficult to ensure that low values in the sensitivity map
indicate less important pixels, since the SNES subnetwork was
trained based on the prepredicted error map.

For better comparison, the difference between the objective
error and the perceptual error maps are shown in the last
column [Fig. 10(e), (j), and (o)]. The blue (red) regions
indicate that the perceptual error maps have lower (higher)
values.

Fig. 11. Example of JND map. (a) Reference image. (b) JND map [41].

For JPEG2000, as shown in Fig. 10(e), the distortions
around the clouds and the sea were emphasized, which agrees
with the human perception. On the other hand, when the image
was distorted by white noise, there was much decrease in
sky regions than the rock regions, as shown in Fig. 10(j),
which indicates that noise on the homogeneous regions was
more noticeable than in the textural regions. For blurred
images, overall tendency was similar between the objective
and perceptual errors as shown in Fig. 10(o).

To further analyze the predicted perceptual error maps,
we utilized the just noticeable difference (JND) models [41]
and an FR-IQA metric, SSIM [35]. Fig. 11(b) shows the
estimated JND map of the reference image (a), which was not
included in the training set. The JND describes the maximum
perceptual distortion that the typical HVS does not perceive.
The JND models were designed based on perceptual com-
putational models, such as luminance adaption and contrast
masking. The higher values in the JND maps indicate the
higher visibility threshold.

Fig. 12(a), (d), and (g) are objective error maps (JPEG2000,
white noise, and GB) where the darker regions represent
more distorted pixels. The corresponding distorted images are
Fig. 10(a), (f), and (p). Due to the reliability maps, it is hard
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Fig. 12. Examples of perceptual error maps and SSIM maps. (a), (d), and
(g) Ground-truth error maps caused by JPEG2000, white noise, and
GB. (b), (e) and (h) Predicted perceptual error maps without reliability
maps. (c), (f), and (i) Corresponding SSIM maps.

to analyze the perceptual error maps in the perspective of
spatial frequency of pixels in Fig. 10. Therefore, we visualized
the perceptual error maps when the reliability maps are not
considered while using the same structure in an FR-IQA
framework [43] in Fig. 12(b), (e), and (h).

By comparing the error maps with the JND map, it is clear
that the distortions on the dark regions in the JND map are
more visible to human observers. In Fig. 12(a), the distortions
around the houses and cloud were more noticeable than
those on the rocks, as shown in Fig. 12(b). For white noise,
the objective error was uniformly distributed over the image.
However, in Fig. 12(e), the distortions on the homogeneous
regions were more noticeable than those on the textural
regions, which agrees with contrast masking. When the image
was distorted by GB, strong edges were especially distorted
as Fig. 12(g), and the perceptual error map also had similar
tendency, as shown in Fig. 12(h). We additionally showed the
SSIM maps in Fig. 12(c), (f), and (i). The SSIM assumes that
the HVS is highly sensitive to structural information. In gen-
eral, the emphasized distortions coincide with the perceptual
error maps. Though the predicted perceptual error maps were
learned without using any prior knowledge of the HVS, it can
be concluded that the results generally agree with the HVS
indeed.

VI. CONCLUSION

We described a deep CNN-based NR-IQA framework.
Applying a CNN to NR-IQA is a challenging issue, because
there are critical obstacles. In the DIQA, an objective error
map was used as an intermediate regression target to avoid
overfitting with the limited database. When the first training
stage is not run enough, the DIQA suffers from the overfitting
problem leading to a degradation of performance. The input
normalization and the reliability map increased the accuracy

significantly as well. The final DIQA model outperformed
all the benchmarked full-reference methods as well as no-
reference methods. We further showed that the performance
of the DIQA is independent of the selection of the database.
We additionally proposed the DIQA-SENS to visualize and
analyze the learned perceptual error maps. The perceptual
error maps followed the behavior of the HVS. In the future,
we will investigate a new way to obtain more meaningful
sensitivity maps that can provide a more interpretable analysis
with respect to the HVS.
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